| Integrated circuits placed all components in one chip, drastically reducing the size of the circuit and its components. |
In 1958 and 1959, Jack Kilby at Texas Instruments and Robert Noyce at Fairchild Camera, came up with a solution to the problem of large numbers of components, and the integrated circuit was developed. Instead of making transistors one-by-one, several transistors could be made at the same time, on the same piece of semiconductor. Not only transistors, but other electric components such as resistors, capacitors and diodes could be made by the same process with the same materials.
For more than 30 years, since the 1960's, the number of transistors per unit area has been doubling every 1.5 years. This fantastic progression of circuit fabrication is known as Moore's law, after Gordon Moore, one of the early integrated circuit pioneers and founders of Intel Corporation. The Nobel Prize in Physics 2000 was awarded to Jack Kilby for the invention of the integrated circuit.
From the dawn of the vacuum tube triode, to the discovery of the transistor and the development of the integrated circuit, the 20th century has certainly been the century of electronics.
http://www.pbs.org/transistor/background1/events/icinv.html
http://nobelprize.org/educational/physics/integrated_circuit/history/index.html
Videos:
http://www.youtube.com/watch?v=uSRIc-sEgPw
http://www.youtube.com/watch?v=ZVhVGItnea8
LOGIC GATES
Boolean functions may be practically implemented by using electronic gates. The following points are important to understand.
- Electronic gates require a power supply.
- Gate INPUTS are driven by voltages having two nominal values, e.g. 0V and 5V representing logic 0 and logic 1 respectively.
- The OUTPUT of a gate provides two nominal values of voltage only, e.g. 0V and 5V representing logic 0 and logic 1 respectively. In general, there is only one output to a logic gate except in some special cases.
- There is always a time delay between an input being applied and the output responding.
http://www.ee.surrey.ac.uk/Projects/Labview/gatesfunc/TruthFrameSet.htm
Logic gates
- The AND gate is an electronic circuit that gives a high output (1) only if all its inputs are high. A dot (.) is used to show the AND operation i.e. A.B. Bear in mind that this dot is sometimes omitted i.e. AB
- The OR gate is an electronic circuit that gives a high output (1) if one or more of its inputs are high. A plus (+) is used to show the OR operation.
- The NOT gate is an electronic circuit that produces an inverted version of the input at its output. It is also known as an inverter. If the input variable is A, the inverted output is known as NOT A. This is also shown as A', or A with a bar over the top, as shown at the outputs. The diagrams below show two ways that the NAND logic gate can be configured to produce a NOT gate. It can also be done using NOR logic gates in the same way.
- This is a NOT-AND gate which is equal to an AND gate followed by a NOT gate. The outputs of all NAND gates are high if any of the inputs are low. The symbol is an AND gate with a small circle on the output. The small circle represents inversion.
- This is a NOT-OR gate which is equal to an OR gate followed by a NOT gate. The outputs of all NOR gates are low if any of the inputs are high.
- The symbol is an OR gate with a small circle on the output. The small circle represents inversion.
- The 'Exclusive-OR' gate is a circuit which will give a high output if either, but not both, of its two inputs are high. An encircled plus sign (
) is used to show the EOR operation.
Digital systems are said to be constructed by using logic gates. These gates are the AND, OR, NOT, NAND, NOR, EXOR and EXNOR gates. The basic operations are described below with the aid of truth tables.
![]()
EXNOR gate
The 'Exclusive-NOR' gate circuit does the opposite to the EOR gate. It will give a low output if either, but not both, of its two inputs are high. The symbol is an EXOR gate with a small circle on the output. The small circle represents inversion.![]()
The NAND and NOR gates are called universal functions since with either one the AND and OR functions and NOT can be generated.
Note:
A function in sum of products form can be implemented using NAND gates by replacing all AND and OR gates by NAND gates.
Table 1: Logic gate symbols
- A function in product of sums form can be implemented using NOR gates by replacing all AND and OR gates by NOR gates.
Table 2 is a summary truth table of the input/output combinations for the NOT gate together with all possible input/output combinations for the other gate functions. Also note that a truth table with 'n' inputs has 2n rows. You can compare the outputs of different gates.
Table 2: Logic gates representation using the Truth table
![]()
Example
A NAND gate can be used as a NOT gate using either of the following wiring configurations. (You can check this out using a truth table.)
No comments:
Post a Comment